

Rolis: A software approach to efficiently replicating multi-core transactions

<u>Weihai Shen</u>

Stony Brook University

Ansh Khanna Stony Brook University

Sebastian Angel University of Pennsylvania and Microsoft Research

Siddhartha Sen Microsoft Research Shuai Mu Stony Brook University

Trade-off between performance and fault-tolerance

	Single-node multi-core system (e.g., Silo, Cicada)	Distributed system (e.g., Spanner)
Performance	Fast (over 1M)	Slow (several or tens of thousand)
Fault tolerance	Limited (can't tolerate node failures)	Strong (tolerate a minority of node failures)

Why distributed systems are so slow

Solutions to fix the high-cost network problem

A recent popular solution

To use advanced kernel-bypass network hardware, e.g., RDMA or DPDK

A possible software-based solution

Adding more current transactions to mask the high-cost network?

Rolis: a software-based solution

	Single-node multi-core system (e.g., Silo, Cicada)	Distributed system (e.g., Spanner)	Rolis
Performance	Fast (over 1M on OLTP)	Slow (several thousand)	Fast
Fault tolerance	Limited (can't tolerate node failures)	Strong (tolerate a minority of node failures)	Strong

Rolis: "execute-replicate-replay" model

Speculative execution

Replay

- 3 friends: Alice, Bob, Charlie
- tx1: Alice transfers 100\$ to Bob (*timestamp: 10*)

Paxos stream-1

• tx2: then Bob transfers this 100\$ to Charlie (*timestamp: 20*)

Paxos stream-2

Leader

R1

R2

Outcome: tx1 is lost, tx2 is durable

10

- Paxos stream-1:
- Paxos stream-2:

watermark = $\mathbf{0}$ (smallest one)

 $\left(\right)$

Leader

- Paxos stream-1: 0
- Paxos stream-2: 20

watermark = 0 (smallest one)

Leader

R1

Evaluation

Benchmarks:

- TPC-C \rightarrow complex
- YCSB++ \rightarrow simpler

Comparisons				
Baseline	Software-based	Hardware-based		
Silo (SOSP '13)	 2PL (from Janus OSDI '16) Calvin (SIGMOD '12) 	Meerkat (Eurosys '20)		

Evaluation: software-based comparisons

• 2 phase-locking

intensive coordination among replicas and holds all locks before transaction execution

 Calvin: a deterministic database
 a central sequencer to determine the order

Evaluation: hardware-based comparison

- A networked Rolis
- Still not an exact apple-to-apple comparison

Rolis client	Meerkat client	
Stored procedure transactions	Interactive transactions	

Summary

- Introduce Rolis's "execute-replicate-replay" model
- How Rolis tracks dependencies and replays transactions
- Show evaluations: 1.03M throughput on TPC-C

Questions?

Q & A or email at weihshen@cs.stonybrook.edu

https://github.com/stonysystems/rolis