
Rolis: A software approach to
efficiently replicating multi-core

transactions
Weihai Shen

Stony Brook University
Ansh Khanna

Stony Brook University

Sebastian Angel
University of Pennsylvania and

Microsoft Research

Siddhartha Sen
Microsoft Research

Shuai Mu
Stony Brook University

1

Trade-off between performance and fault-tolerance

Performance

Fault
tolerance

Single-node
multi-core system

(e.g., Silo, Cicada)

Distributed system
(e.g., Spanner)

Fast
(over 1M)

Strong
(tolerate a minority of

node failures)

Slow
(several or tens of

thousand)

Limited
(can’t tolerate node

failures)

2

Why distributed systems are so slow

Replication

Coordination
Network are expensive!

Multiple round trips!

3

Solutions to fix the high-cost network problem

4

To use advanced kernel-bypass
network hardware, e.g., RDMA or
DPDK

A recent popular solution A possible software-based solution

Adding more current transactions to
mask the high-cost network?

A low throughput system!

Rolis: a software-based solution

Performance

Fault
tolerance

Single-node
multi-core system

(e.g., Silo, Cicada)

Distributed system
(e.g., Spanner)

Fast
(over 1M on OLTP)

Strong
(tolerate a minority of

node failures)

Slow
(several thousand)

Limited
(can’t tolerate node

failures)

Fast

Strong

Rolis

5

Rolis: “execute-replicate-replay” model

1. speculative execution by
multiple worker threads

2. asynchronous replication over
multiple Paxos streams

3. replay efficiently

6

Speculative execution

● Atop of Silo

● A building block with two
small modifications
void *txn = db->new_txn() ;
db->commit_txn(txn) ;

int64 timestamp = global_timestamp(); #1

// defer releasing this transaction to the client #2

7

Asynchronous replication

● Paxos!

● Instead, Rolis uses multiple
independent Paxos streams

the bottleneck due
to sequential

ordering Execute no
need to wait
for Replicate
completion

8

Replay
● 3 friends: Alice, Bob,

Charlie

Leader

10

● tx1: Alice transfers 100$
to Bob (timestamp: 10)

20

● tx2: then Bob transfers
this 100$ to Charlie
(timestamp: 20)

Paxos stream-1

Paxos stream-2

1
tx2

1
tx2

R1 R2

20 20

Outcome: tx1 is lost, tx2 is durable
9

tx1 tx2

Watermark: tracking dependencies

safe

defer

Most recent durable timestamp:
● Paxos stream-1:
● Paxos stream-2:

0
0

 watermark = (smallest one)0
Leader

10

1
tx2

1
tx2

R1 R2

20

watermark

Transaction timestamp
10

Watermark: tracking dependencies
Most recent durable timestamp:
● Paxos stream-1:
● Paxos stream-2:

0
0

 watermark = (smallest one)0
Leader

10

1
tx2

1
tx2

R1 R2

20

11

Watermark: tracking dependencies
Most recent durable timestamp:
● Paxos stream-1:
● Paxos stream-2:

0
20

 watermark = (smallest one)0
Leader

10

1
20

1
20

R1 R2

20

12

Watermark: tracking dependencies
Most recent durable timestamp:
● Paxos stream-1:
● Paxos stream-2:

10
20

 watermark = (smallest one)10
Leader

10

1
20

10
20

R1 R2

20

10

20

17
still speculative on
the leader

13

Evaluation
Benchmarks:
● TPC-C
● YCSB++

Comparisons

Baseline Software-based Hardware-based

Silo
(SOSP ‘13)

● 2PL
(from Janus OSDI ‘16)

● Calvin
(SIGMOD ‘12)

Meerkat
(Eurosys ‘20)

14

→ complex
 → simpler

Evaluation: scalability of Rolis

1.03 M

31 % drop due
to serialization
and replication

15

Evaluation: software-based comparisons

● 2 phase-locking

● Calvin: a deterministic database

intensive coordination among
replicas and holds all locks
before transaction execution

a central sequencer to
determine the order

16

Evaluation: hardware-based comparison

● A networked Rolis

● Still not an exact
apple-to-apple comparison

Rolis client Meerkat client

Stored procedure
transactions

Interactive
transactions

17

Summary

● Introduce Rolis’s “execute-replicate-replay” model
● How Rolis tracks dependencies and replays transactions
● Show evaluations: 1.03M throughput on TPC-C

Questions?

Q & A or email at
weihshen@cs.stonybrook.edu

https://github.com/stonysystems/rolis

18

https://github.com/stonysystems/rolis

